Existence of Solutions for Nonlinear Mixed Type Integrodifferential Functional Evolution Equations with Nonlocal Conditions

نویسندگان

  • Shengli Xie
  • Beata Rzepka
چکیده

and Applied Analysis 3 The evolution system R t, s is said to be equicontinuous if for all bounded set Q ⊂ X, {s → R t, s x : x ∈ Q} is equicontinuous for t > 0. x ∈ C −q, b , X is said to be a mild solution of the nonlocal problem 1.1 , if x t φ t g x t for t ∈ −q, 0 , and, for t ∈ J , it satisfies the following integral equation: x t R t, 0 [ φ 0 g x 0 ] ∫ t 0 R t, s f ( s, xs, ∫ s 0 K s, r, xr dr, ∫b 0 H s, r, xr dr ) ds. 2.1 The following lemma is obvious. Lemma 2.2. Let the evolution system R t, s be equicontinuous. If there exists a ρ ∈ L1 J,R such that ‖x t ‖ ≤ ρ t for a.e. t ∈ J , then the set {∫ t 0 R t, s x s ds} is equicontinuous. Lemma 2.3 see 21 . Let V {xn} ⊂ L1 a, b , X . If there exists σ ∈ L1 a, b ,R such that ‖xn t ‖ ≤ σ t for any xn ∈ V and a.e. t ∈ a, b , then α V t ∈ L1 a, b ,R and α ({∫ t 0 xn s ds : n ∈ N }) ≤ 2 ∫ t 0 α V s ds, t ∈ a, b . 2.2 Lemma 2.4 see 22 . Let V ⊂ C a, b , X be an equicontinuous bounded subset. Then α V t ∈ C a, b ,R R 0,∞ , α V maxt∈ a,b α V t . Lemma 2.5 see 23 . LetX be a Banach space,Ω a closed convex subset inX, and y0 ∈ Ω. Suppose that the operator F : Ω → Ω is continuous and has the following property: V ⊂ Ω countable, V ⊂ co({y0} ∪ F V ) ⇒ V is relatively compact. 2.3 Then F has a fixed point in Ω. Let V t {x t : x ∈ C −q, b , X } ⊂ X t ∈ J , Vt {xt : x ∈ C −q, b , X } ⊂ C −q, 0 , X , α · and αC · denote the Kuratowski measure of noncompactness in X and C −q, b , X , respectively. For details on properties of noncompact measure, see 22 . 3. Existence Result We make the following hypotheses for convenience. H1 g : C 0, b , X → C −q, 0 , X is continuous, compact and there exists a constant N such that ‖g x ‖ −q,0 ≤ N. H2 1 f : J × C −q, 0 , X × X × X → X satisfies the Carathodory conditions, that is, f ·, x, y, z is measurable for each x ∈ C −q, b , X , y, z ∈ X, f t, ·, ·, · is continuous for a.e. t ∈ J . 2 There is a bounded measure function p : J → R such that ∥∥f(t, x, y, z)∥∥ ≤ p t (‖x‖ −q,0 ∥∥y∥∥ ‖z‖), a.e. t ∈ J, x ∈ C([−q, 0], X), y, z ∈ X. 3.1 4 Abstract and Applied Analysis H3 1 For each x ∈ C −q, 0 , X , K ·, ·, x ,H ·, ·, x : J × J → X are measurable and K t, s, · ,H t, s, · : C −q, 0 , X → X is continuous for a.e. t, s ∈ J . 2 For each t ∈ 0, b , there are nonnegative measure functions k t, · , h t, · on 0, b such that ‖K t, s, x ‖ ≤ k t, s ‖x‖ −q,0 , t, s ∈ Δ, x ∈ C ([−q, 0], X), ‖H t, s, x ‖ ≤ h t, s ‖x‖ −q,0 , t, s ∈ J, x ∈ C ([−q, 0], X), 3.2 and ∫ t 0 k t, s ds, ∫b 0 h t, s ds are bounded on 0, b . H4 For any bounded set V1 ⊂ C −q, 0 , X , V2, V3 ⊂ X, there is bounded measure function li ∈ C J,R i 1, 2, 3 such that α ( f t, V1, V2, V3 ≤ l1 t sup −q≤θ≤0 α V1 θ l2 t α V2 l3 t α V3 , a.e. t ∈ J, α (∫ t 0 K t, s, V1 ds ) ≤ k t, s sup −q≤θ≤0 α V1 θ , t ∈ J, α (∫b 0 H t, s, V1 ds ) ≤ h t, s sup −q≤θ≤0 α V1 θ , t ∈ J. 3.3 H5 The resolvent operator R t, s is equicontinuous and there are positive numbers M ≥ 1 and w max { Mp0 1 k0 h0 1, 2M ( l0 1 2l 0 2k0 2l 0 3h0 ) 1 } , 3.4 such that ‖R t, s ‖ ≤ Me−w t−s , 0 ≤ s ≤ t ≤ b, where k0 sup t,s ∈Δ ∫ t 0 k t, s ds, h0 supt,s∈J ∫b 0 h t, s ds, p0 supt∈Jp t , l 0 i supt∈J li t i 1, 2, 3 . Theorem 3.1. Let conditions H1 – H5 be satisfied. Then the nonlocal problem 1.1 has at least one mild solution. Proof. Define an operator F : C −q, b , X → C −q, b , X by Fx t ⎪⎪⎨ ⎪⎪⎩ φ t g x t , t∈[−q, 0], R t, 0 [ φ 0 g x 0 ] ∫ t 0 R t, s f ( s, xs, ∫ s 0 K s, r, xr dr, ∫b 0 H s, r, xr dr ) ds, t ∈ 0, b . 3.5 Abstract and Applied Analysis 5 We have by H1 – H3 and H5 ,and Applied Analysis 5 We have by H1 – H3 and H5 , ‖ Fx t ‖ ≤ ∥∥φ∥∥ −q,0 N ≤ M(∥∥φ∥∥ −q,0 N) : L, t ∈ [−q, 0], ‖ Fx t ‖ ≤ L M ∫ t 0 e s−t ∥∥∥∥f ( s, xs, ∫ s 0 K s, r, xr dr, ∫b 0 H s, r, xr dr ∥∥∥∥ds ≤ L M ∫ t 0 e s−t p s ( ‖xs‖ −q,0 ∫s 0 ‖K s, r, xr ‖dr ∫b 0 ‖H s, r, xr ‖dr ) ds ≤ L Mp0 ∫ t 0 e s−t ( ‖xs‖ −q,0 ∫ s 0 k s, r ‖xr‖ −q,0 dr ∫b 0 h s, r ‖xr‖ −q,0 dr ) ds ≤ L Mp0 1 k0 h0 w−1‖x‖ −q,b , t ∈ 0, b . 3.6

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear functional integrodifferential evolution equations with nonlocal conditions in Banach spaces

In this paper, the Leray-Schauder Alternative is used to investigate the existence of mild solutions to first-order nonlinear functional integrodifferential evolution equations with nonlocal conditions in Banach spaces. AMS subject classifications: 34K30, 34A60, 34G20

متن کامل

Impulsive integrodifferential Equations and Measure of noncompactness

This paper is concerned with the existence of mild solutions for impulsive integro-differential equations with nonlocal conditions. We apply the technique measure of noncompactness in the space of piecewise continuous functions and by using Darbo-Sadovskii's fixed point theorem, we prove reasults about impulsive integro-differential equations for convex-power condensing operators.

متن کامل

Existence Results for Nonlinear Boundary Value Problems of Impulsive Fractional Integrodifferential Equations

In this paper, we investigate the existence result for nonlinear impulsive fractional integro-differential equations with boundary conditions by using fixed point theorem and Green's function. I. INTRODUCTION The topic of fractional differential equations has received a great deal of attention from many scientists and researchers during the past decades; see [1-7]. This is mostly due to the fac...

متن کامل

Zuomao Yan EXISTENCE OF SOLUTIONS FOR SOME NONLINEAR DELAY INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCAL INITIAL CONDITIONS

The main purpose of this paper is the existence of mild solutions for a class of first-order nonlinear delay integrodifferential equations with nonlocal initial conditions in Banach spaces. We show that the solutions are given by the application of the theory of resolvent operators and the Sadovskii’s fixed point theorem. An example is presented in the end to show the applications of the obtain...

متن کامل

Nonlocal Cauchy problem for delay integrodifferential equations of Sobolev type in Banach spaces

In this paper, we prove the existence of mild and strong solutions of nonlinear time varying delay integrodifferential equations of Sobolev type with nonlocal cqnditions in Banach spaces. The results are obtained by using the theory of compact semigroups and Schaefer’s fixed-point theorem. @ 2002 Elsevier Science Ltd. All rights reserved. Keywords-Existence theorem, Delay integrodifferential eq...

متن کامل

Existence for Delay Integrodifferential Equations of Sobolev Type with Nonlocal Conditions

This paper is concerned with delay integrodifferential equations of Sobolev type with nonlocal conditions in Banach spaces. Using the theory of semigroups and the method of fixed points, existence results are obtained for mild solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014